Thermal pleasure in built environments: physiology of alliesthesia
This article summarises a research paper 'Thermal pleasure in built environments: physiology of alliesthesia' by Thomas Parkinson & Richard de Dear published in 2015 in --Building Research & Information, 43:3, 288-301, DOI: 10.1080/09613218.2015.989662.
It is the second in a series exploring thermal alliesthesia in the context of indoor comfort.
It has long been recognised that our experience of thermal comfort is more complex than the steady-state heat balance adopted by many international standards which strive simply to achieve 'neutrality'.
As de Dear (2011) stated: If the very best that can be achieved in an isothermal, cool, dry and still indoor climate is 'neutral' or 'acceptable' for little more than 80% of a building's occupants at any one time, then the standards that have been set to date leave much to be desired.
The recent mainstreaming of 'adaptive comfort' begins to recognise the dynamic complexity of thermal comfort. However, 'thermal alliesthesia' goes beyond this, proposing that the hedonic qualities of the thermal environment (qualities of pleasantness or unpleasantness, or 'the pleasure principle') are determined as much by the general thermal state of the subject as by the environment itself. In its simplest form, cold stimuli will be perceived as pleasant by someone who is warm, whilst warm stimuli will be experienced as pleasant by someone who is cold.
The alliesthesia hypothesis suggests that non-steady-state environments where there are localised differences in skin temperature can create conscious experiences of thermal pleasure. The paper proposes that the alliesthesia concept is more complex than simple consideration of the relationship between core and skin temperature, and includes a spatial component. For example, we derive pleasure from wrapping cool hands around a warm mug.
The paper suggests that the concept of a one-size-fits-all approach to the provision of thermal comfort using centralised mechanical systems is flawed, and diversity in thermal preferences suggests criteria for evaluating comfort may need to be reconsidered. The implication is that standards for building services would focus more on providing the appropriate thermal conditions to the individual.
Non-steady-state thermal environments may give the potential to lift occupant satisfaction rates above 80%. To create instances of thermal pleasure, these dynamic effects need to be better understood, and solutions developed that excite the thermal sense and overcome thermal boredom.
Thomas Parkinson & Richard de Dear (2015) Thermal pleasure in built environments: physiology of alliesthesia, Building Research & Information, 43:3, 288-301, DOI: 10.1080/09613218.2015.989662
Read the full paper at Taylor & Francis Online.
See also: Healthy excursions outside the thermal comfort zone.
[edit] Related articles on Designing Buildings Wiki
- Cold stress.
- Comfort in low energy buildings.
- Dry-bulb temperature.
- Evolving opportunities for providing thermal comfort.
- Globe temperature.
- Healthy excursions outside the thermal comfort zone.
- Heat stress.
- ‎Maximum and minimum workplace temperatures.
- Mean radiant temperature.
- Operative temperature.
- Overheating - assessment protocol.
- Predicted mean vote.
- Preventing overheating.
- Psychometric charts.
- Sling psychrometer.
- Temperature.
- The building as climate modifier.
- Thermal comfort.
- Thermal environment.
- Thermal indices.
- Wet-bulb temperature.
- Wet-bulb globe temperature.
[edit] External references
- de Dear, R. (2011). Revisiting an old hypothesis of human thermal perception: Alliesthesia. Building Research&Information, 39(2), 108–117.
http://www.tandfonline.com/doi/full/10.1080/09613218.2011.55226
Featured articles and news
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.






















